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Abstract

This paper describes an implementation of the Lin—Kernighan heuristic, one of the most successful methods for
generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests
show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have
been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality

today). © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Lin—Kernighan heuristic [1] is generally
considered to be one of the most effective methods
for generating optimal or near-optimal solutions
for the symmetric traveling salesman problem
(TSP). However, the design and implementation of
an algorithm based on this heuristic is not trivial.
There are many design and implementation deci-
sions to be made, and most decisions have a great
influence on performance.

This paper describes the implementation of a
new modified version of the Lin—Kernighan algo-
rithm. Computational experiments have shown
that the implementation is highly effective.

E-mail address: keld@ruc.dk (K. Helsgaun).

The new algorithm differs in many details from
the original one. The most notable difference is
found in the search strategy. The new algorithm
uses larger (and more complex) search steps than
the original one. Also new is the use of sensitivity
analysis to direct and restrict the search.

Run times of both algorithms increase ap-
proximately as n*2. However, the new algorithm is
much more effective. The new algorithm makes it
possible to find optimal solutions to large-scale
problems, in reasonable running times.

For a typical 100-city problem the optimal so-
lution is found in less than a second, and for a
typical 1000-city problem optimum is found in less
than a minute (on a 300 MHz G3 Power Macin-
tosh).

Even though the algorithm is approximate,
optimal solutions are produced with an impres-
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sively high frequency. It has produced optimal
solutions for all solved problems we have been
able to obtain, including a 13,509-city problem (at
the time of writing, the largest non-trivial problem
solved to optimality). Furthermore, the algorithm
has improved the best known solutions for a series
of large-scale problems with unknown optima,
among these an 85,900-city problem.

The rest of this paper is organized as follows.
Section 2 defines the TSP and gives an overview of
solution algorithms. Section 3 describes the origi-
nal algorithm of Lin and Kernighan (including
their own refinements of the algorithm). Sections 4
and 5 present the new modified algorithm and its
implementation. The effectiveness of the imple-
mentation is reported in Section 6.

2. The traveling salesman problem
2.1. Formulation

A salesman is required to visit each of n given
cities once and only once, starting from any city
and returning to the original place of departure.
What tour should he choose in order to minimize
his total travel distance?

The distances between any pair of cities are
assumed to be known by the salesman. Distance
can be replaced by another notion, such as time or
money. In the following the term ‘cost’ is used to
represent any such notion.

This problem, the TSP, is one of the most
widely studied problems in combinatorial optimi-
zation [2]. Mathematically, the problem may be
stated as follows:

Given a ‘cost matrix’ C = (c;;), where ¢;; rep-
resents the cost of going from city i to city j,
(i,j=1,...,n), find a  permutation
(i1,i2,03,...,i,) of the integers from 1
through n that minimizes the quantity

Cirig T Cigiy + 7+ Ciyiy

Properties of the cost matrix C are used to
classify problems.
e If ¢;; = ¢;; for all i and j, the problem is said to
be symmetric; otherwise, it is asymmetric.

e If the triangle inequality holds (ci < ¢;; + ¢ for
all 7, j and k), the problem is said to be metric.

e If ¢;; are Euclidean distances between points in
the plane, the problem is said to be Euclidean.
A Euclidean problem is, of course, both sym-
metric and metric.

2.2. Solution algorithms

The problem is easy to state, but hard to solve.
The difficulty becomes apparent when one con-
siders the number of possible tours — an astro-
nomical figure even for a relatively small number
of cities. For a symmetric problem with » cities
there are (n— 1)!/2 possible tours. If # is 20, there
are more than 10'® tours. The 13,509-city problem,
which is successfully solved by the algorithm de-
scribed in this paper, contains about 10°%%° pos-
sible tours. In comparison it may be noted that the
number of elementary particles in the universe has
been estimated to be ‘only’ 10%7.

It has been proven that TSP is a member of the
set of NP-complete problems. This is a class of
difficult problems whose time complexity is prob-
ably exponential. The members of the class are
related so that if a polynomial time were found for
one problem, polynomial time algorithms would
exist for all of them. However, it is commonly
believed that no such polynomial algorithm exists.
Therefore, any attempt to construct a general al-
gorithm for finding optimal solutions for the TSP
in polynomial time must (probably) fail.

Algorithms for solving the TSP may be divided
into two classes:

e Exact algorithms.
e Approximate (or heuristic) algorithms.

2.2.1. Exact algorithms

The exact algorithms are guaranteed to find the
optimal solution in a bounded number of steps.

The most effective exact algorithms are cut-
ting-plane or facet-finding algorithms [3-5]. These
algorithms are quite complex, with codes on the
order of 10,000 lines. In addition, the algorithms
are very demanding of computer power. For ex-
ample, it took roughly 3—4 years of CPU time on
a large network of computers to determine the
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exact solution of a 7397-city problem [5]. The
previously mentioned 13,509-city problem was
solved over a period of three months using a
cluster of 3 servers, a total of 12 processors, and
32 PCs [6].

2.2.2. Approximate algorithms

In contrast, the approximate algorithms obtain
good solutions but do not guarantee that optimal
solutions will be found. These algorithms are
usually very simple and have (relatively) short
running times. Some of the algorithms give so-
lutions that in average differs only by a few
percent from the optimal solution. Therefore, if a
small deviation from optimum can be accepted,
it may be appropriate to use an approximate
algorithm.

The class of approximate algorithms may be
subdivided into the following three classes:

o Tour construction algorithms.
o Tour improvement algorithms.
o Composite algorithms.

The tour construction algorithms gradually build
a tour by adding a new city at each step. The tour
improvement algorithms improve upon a tour by
performing various exchanges. The composite al-
gorithms combine these two features.

A simple example of a tour construction algo-
rithm is the so-called nearest-neighbor algorithm:
Start in an arbitrary city. As long as there are
cities, that have not yet been visited, visit the
nearest city that still has not appeared in the tour.
Finally, return to the first city.

A simple example of a tour improvement al-
gorithm is the so-called 2-opt algorithm: Start with
a given tour. Replace 2 links of the tour with 2
other links in such a way that the new tour length
is shorter. Continue in this way until no more
improvements are possible.

Fig. 1 illustrates a 2-opt exchange of links, a so-
called 2-opt move. Note that a 2-opt move keeps
the tour feasible and corresponds to a reversal of a
subsequence of the cities.

A generalization of this simple principle forms
the basis for one the most effective approximate
algorithms for solving the symmetric TSP, the
Lin—Kernighan algorithm [1].

t4 t3 t4 t3

Fig. 1. A 2-opt move.

3. The Lin—Kernighan algorithm
3.1. The basic algorithm

The 2-opt algorithm is a special case of the /-
opt algorithm [7], where in each step 4 links of the
current tour are replaced by 4 links in such a way
that a shorter tour is achieved. In other words, in
each step a shorter tour is obtained by deleting 1
links and putting the resulting paths together in a
new way, possibly reversing one ore more of them.

The /-opt algorithm is based on the concept A-
opt:

A tour is said to be A-optimal (or simply A-
opt) if it is impossible to obtain a shorter
tour by replacing any /A of its links by any
other set of A links.

From this definition it is obvious that any A-opt
tour is also A'-opt for 1< A < /. It is also easy to
see that a tour containing 7 cities is optimal if and
only if it is n-opt.

In general, the larger the value of A, the more
likely it is that the final tour is optimal. For fairly
large Z it appears, at least intuitively, that a A-opt
tour should be optimal.

Unfortunately, the number of operations to test
all J-exchanges increases rapidly as the number of
cities increases. In a naive implementation the
testing of a A-exchange has a time complexity of
O(n*). Furthermore, there is no non-trivial upper
bound of the number of A-exchanges. As a result,
the values =2 and 4 =3 are the most commonly
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used. In one study the values 2=4 and A =15 were
used [8].

However, it is a drawback that /4 must be
specified in advance. It is difficult to know what 24
to use to achieve the best compromise between
running time and quality of solution.

Lin and Kernighan removed this drawback by
introducing a powerful variable i-opt algorithm.
At each iteration step the algorithm examines, for
ascending values of /, whether an interchange of 4
links may result in a shorter tour.

Given that the exchange of /4 links is being
considered, a series of tests is performed to deter-
mine whether A+ 1 link exchanges should be con-
sidered. This continues until some stopping
conditions are satisfied.

At each step the algorithm considers a growing
set of potential exchanges (starting with A=2).
These exchanges are chosen in such a way that a
feasible tour may be formed at any stage of the
process. If the exploration succeeds in finding a
new shorter tour, then the actual tour is replaced
with the new tour.

The Lin—Kernighan algorithm belongs to the
class of so-called local optimization algorithms [9,
10]. The algorithm is specified in terms of ex-
changes (or moves) that can convert one tour into
another. Given a feasible tour, the algorithm re-
peatedly performs exchanges that reduce the
length of the current tour, until a tour is reached
for which no exchange yields an improvement.
This process may be repeated many times from
initial tours generated in some randomized way.
The algorithm is described below in more detail.

Let T be the current tour. At each iteration step
the algorithm attempts to find two sets of links,

X2 x3 x2 T/\r X3
Y2
—_—
Y1 y3
X] X1

Fig. 2. A 3-opt move.

X ={xy,...,x,} and Y = {y,..., 5}, such that, if
the links of X are deleted from 7 and replaced by
the links of Y, the result is a better tour. This in-
terchange of links is called a r-opt move. Fig. 2
illustrates a 3-opt move.

The two sets X and Y are constructed element
by element. Initially X and Y are empty. In step i a
pair of links, x; and y;, are added to X and Y, re-
spectively.

In order to achieve a sufficient efficient algo-
rithm, only links that fulfill the following criteria
may enter X and Y.

(1) The sequential exchange criterion: x; and y;
must share an endpoint, and so must y; and x,,;.
If #; denotes one of the two endpoints of x;, we
have in general: x; = (ty_1,%:), ¥; = (tu, tr1) and
Xiy1 = (taiy1, tr2) for i = 1. See Fig. 3.

As seen, the sequence (x1, v, X2, »,X3, ..
constitutes a chain of adjoining links.

A necessary (but not sufficient) condition that
the exchange of links X with links Y results in a
tour is that the chain is closed, i.e., y, = (f, ).
Such an exchange is called sequential.

Generally, an improvement of a tour may be
achieved as a sequential exchange by a suitable
numbering of the affected links. However, this is
not always the case. Fig. 4 shows an example
where a sequential exchange is not possible.

(2) The feasibility criterion: It is required that
x; = (ty_1,t;) 1s chosen so that, if 1,; is joined to #,
the resulting configuration is a tour. This feasibil-
ity criterion is used for i > 3 and guarantees that it
is possible to close up to a tour. This criterion was

* 7xr7yr)

iyl
Xi+1

it

ty x; f2i-1

Fig. 3. Restricting the choice of x;, y;, x;11, and y,1.
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X2

X2
R
Y3
X3 X4 e X3 X4
Y4 Y4
: NP
D
X1

Fig. 4. Non-sequential exchange (r = 4).

included in the algorithm both to reduce running
time and to simplify the coding.

(3) The positive gain criterion: It is required that
y; 1s always chosen so that the gain, G;, from the
proposed set of exchanges is positive. Suppose
gi = c(x;) —c(y;) is the gain from exchanging x;
with y;. Then G; is the sum g + g, + --- + g;.

This stop criterion plays a great role in the ef-
ficiency of the algorithm. The demand that every
partial sum, G;, must be positive seems immedi-
ately to be too restrictive. That this, however, is
not the case, follows from the following simple
fact: If a sequence of numbers has a positive sum,
there is a cyclic permutation of these numbers such
that every partial sum is positive. The proof is
simple and can be found in [1].

(4) The disjunctivity criterion: Finally, it is re-
quired that the sets X and Y are disjoint. This
simplifies coding, reduces running time and gives
an effective stop criterion.

3.2. Lin and Kernighan’s refinements

A bottleneck of the algorithm is the search for
links to enter the sets X and Y. In order to increase
efficiency, special care therefore should be taken to
limit this search. Only exchanges that have a rea-
sonable chance of leading to a reduction of tour
length should be considered.

The basic algorithm as presented in the pre-
ceding section limits its search by using the fol-
lowing four rules:

(1) Only sequential exchanges are allowed.

(2) The provisional gain must be positive.

(3) The tour can be ‘closed’ (with one exception,

i=2).

(4) A previously broken link must not be added,
and a previously added link must not be bro-
ken.

To limit the search even more Lin and Kerni-
ghan refined the algorithm by introducing the
following rules:

(5) The search for a link to enter the tour,

¥ = (ta, tiv1), 1s limited to the five nearest

neighbors to f,;.

(6) For i = 4, no link, x;, on the tour must be

broken if it is a common link of a small number

(2-5) of solution tours.

(7) The search for improvements is stopped if

the current tour is the same as a previous solu-

tion tour.

Rules 5 and 6 are heuristic rules. They are based
on expectations of which links are likely to belong
to an optimal tour. They save running time, but
sometimes at the expense of not achieving the best
possible solutions.

Rule 7 also saves running time, but has no in-
fluence on the quality of solutions being found. If a
tour is the same as a previous solution tour, there
is no point in attempting to improve it further. The
time needed to check that no more improvements
are possible (the checkout time) may therefore be
saved.

In addition to these refinements, whose purpose
is primarily to /imit the search, Lin and Kernighan
added some refinements whose purpose is pri-
marily to direct the search. Where the algorithm
has a choice of alternatives, heuristic rules are used
to give priorities to these alternatives. In cases
where only one of the alternatives must be chosen,
the one with the highest priority is chosen. In cases
where several alternatives must be tried, the al-
ternatives are tried in descending priority order
(using backtracking). To be more specific, the
following rules are used:

(8) When link y;(i > 2) is to be chosen, each

possible choice is given the priority c(x;1)—

c(n)-

(9) If there are two alternatives for x4, the one

where ¢(x4) is highest is chosen.

Rule 8 is a heuristic rule for ranking the links to
be added to Y. The priority for y; is the length of
the next (unique) link to be broken, x;.;, if y; is
included in the tour, minus the length of y;. In this
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way, the algorithm is provided with some look-
ahead. By maximizing the quantity c(x;;1) — ¢(»),
the algorithm aims at breaking a long link and
including a short link.

Rule 9 deals with the special situation where
there are two choices for x4. The rule gives pref-
erence to the longest link in this case. In three
other cases, namely for x;, x,, and sometimes x3,
there are two alternatives available. In these situ-
ations the algorithm examines both choices using
backtracking (unless an improved tour was
found). In their paper Lin and Kernighan do not
specify the sequence in which the alternatives are
examined.

As a last refinement, Lin and Kernighan in-
cluded a limited defense against the situations
where only non-sequential exchanges may lead to
a better solution. After a local optimum has been
found, the algorithm tests, among the links al-
lowed to be broken, whether it is possible to make
a further improvement by a non-sequential 4-opt
change (as shown in Fig. 4).

4. The modified Lin—Kernighan algorithm

Lin and Kernighan’s original algorithm was
reasonably effective. For problems with up to 50
cities, the probability of obtaining optimal solu-
tions in a single trial was close to 100%. For
problems with 100 cities the probability dropped
to between 20% and 30%. However, by running a
few trials, each time starting with a new random
tour, the optimum for these problems could be
found with nearly 100% assurance.

The algorithm was evaluated on a spectrum of
problems, among these a drilling problem with 318
points. Due to computer-storage limitations, the
problem was split into three smaller problems. A
solution tour was obtained by solving the sub-
problems separately, and finally joining the three
tours. At the time when Lin and Kernighan wrote
their paper (1971), the optimum for this problem
was unknown. Now that the optimum is known, it
may be noted that their solution was 1.3% above
optimum.

In the following, a modified and extended ver-
sion of their algorithm is presented. The new al-

gorithm is a considerable improvement of the
original algorithm. For example, for the men-
tioned 318-city problem the optimal solution is
now found in a few trials (approximately 2), and in
a very short time (about one second on a 300 MHz
G3 Power Macintosh). In general, the quality of
solutions achieved by the algorithm is very im-
pressive.

The increase in efficiency is primarily achieved
by a revision of Lin and Kernighan’s heuristic
rules for restricting and directing the search. Even
if their heuristic rules seem natural, a critical
analysis shows that they suffer from considerable
defects.

4.1. Candidate sets

A central rule in the original algorithm is the
heuristic rule that restricts the inclusion of links in
the tour to the five nearest neighbors to a given
city (Rule 5 in Section 3.2). This rule directs the
search against short tours and reduces the search
effort substantially. However, there is a certain risk
that the application of this rule may prevent the
optimal solution from being found. If an optimal
solution contains one link, which is not connected
to the five nearest neighbors of its two end cities,
then the algorithm will have difficulties in obtain-
ing the optimum.

The inadequacy of this rule manifests itself
particularly clearly in large problems. For exam-
ple, for a 532-city problem [11] one of the links in
the optimal solution is the 22nd nearest neighbor
city for one of its end points. So in order to find
the optimal solution to this problem, the number
of nearest neighbors to be considered ought to be
at least 22. Unfortunately, this enlargement of the
set of candidates results in a substantial increase in
running time.

The rule builds on the assumption that the
shorter a link is, the greater is the probability that
it belongs to an optimal tour. This seems reason-
able, but used too restrictively it may result in poor
tours.

In the following, a measure of nearness is de-
scribed that better reflects the chances of a given
link being a member of an optimal tour. This
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measure, called a-nearness, is based on sensitivity
analysis using minimum spanning 1-trees.

First, some well-known graph theoretical ter-
minology is reviewed.

Let G=(N, E) be a undirected weighted graph
where N ={1,2,...,n} is the set of nodes and
E={(i,j)| i€ N,je€ N} is the set of edges. Each
edge (i,/) has associated a weight c(i, j).

A path is a set of edges {(i1,h),
(iz, i3), ey (ik—hik)} with ip 75 iq for all P 75 q.

A cycle is a set of edges {(i1,h),
(i2,13), ..., (ix—1,01) } with i, # i, forallp # g ie., a
path where the endpoints coincide.

A tour is a cycle where k=n.

For any subset Sc E the length of S, L(S), is
given by L(S) = >, s (i, j)-

An optimal tour is a tour of minimum length.
Thus, the symmetric TSP can simply be formu-
lated as: “Given a weighted graph G, determine an
optimal tour of G”.

A graph G is said to be connected if it contains
for any pair of nodes a path connecting them.

A tree is a connected graph without cycles. A
spanning tree of a graph G with n nodes is a tree
with n — 1 edges from G. A minimum spanning tree
is a spanning tree of minimum length.

Now the important concept of a 1-tree may be
defined.

A 1-tree for a graph G = (N, E) is a spanning
tree on the node set N \ {1} combined with
two edges from E incident to node 1.

The choice of node 1 as a special node is arbi-
trary. Note that a I-tree is not a tree since it
contains a cycle (containing node 1; see Fig. 5).

A minimum l-tree is a l-tree of minimum
length.

The degree of a node is the number of edges
incident to the node.

It is easy to see [12,13] that:

1. an optimal tour is a minimum 1-tree where ev-

ery node has degree 2;

2. if a minimum 1-tree is a tour, then the tour is
optimal.

Thus, an alternative formulation of the sym-
metric TSP is: “Find a minimum 1-tree all whose
nodes have degree 2.

10 /
AN /
N,/
N / )
1 --s— special node

Fig. 5. A 1-tree.

Usually a minimum spanning tree contains
many edges in common with an optimal tour. An
optimal tour normally contains between 70% and
80% of the edges of a minimum 1-tree. Therefore,
minimum I-trees seem to be well suited as a heu-
ristic measure of ‘nearness’. Edges that belong, or
‘nearly belong’, to a minimum 1-tree, stand a good
chance of also belonging to an optimal tour.
Conversely, edges that are ‘far from’ belonging to a
minimum 1-tree have a low probability of also
belonging to an optimal tour. In the Lin-Kerni-
ghan algorithm these ‘far’ edges may be excluded
as candidates to enter a tour. It is expected that
this exclusion does not cause the optimal tour to
be missed.

More formally, this measure of nearness is de-
fined as follows:

Let 7 be a minimum I-tree of length L(T)
and let 7% (i, j) denote a minimum 1-tree re-
quired to contain the edge (7,/). Then the
a-nearness of an edge (i, /) is defined as the
quantity

ofi, j) = L(T* (i, /) — L(T).

That is, given the length of (any) minimum 1-
tree, the a-nearness of an edge is the increase of
length when a minimum 1-tree is required to
contain this edge.
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It is easy to verify the following two simple
properties of a:

(1) a(i, j) > 0.

(2) If (i,j) belongs to some minimum 1-tree,

then «(i, j) = 0.

The a-measure can be used to systematically
identify those edges that could conceivably be in-
cluded in an optimal tour, and disregard the re-
mainder. These ‘promising edges’, called the
candidate set, may, for example, consist of the k -
nearest edges incident to each node, and/or those
edges having an a-nearness below a specified upper
bound.

In general, using the a-measure for specifying
the candidate set is much better than using nearest
neighbors. Usually, the candidate set may be
smaller, without degradation of the solution
quality.

The use of a-nearness in the construction of the
candidate set implies computations of o-values.
The efficiency, both in time of space, of these
computations is therefore important. The method
is not of much practical value, if the computations
are too expensive. In the following an algorithm is
presented that computes all a-values. The algo-
rithm has time complexity O(n?) and uses space
O(n).

Let G = (N,E) be a complete graph, that is, a
graph where for all nodes i and j in NV there is
an edge (i,j) in E. The algorithm first finds a
minimum l-tree for G. This can be done by
determination of a minimum spanning tree that
contains the nodes {2,3,...,n}, followed by the
addition of the two shortest edges incident to
node 1. The minimum spanning tree may, for
example, be determined using Prim’s algorithm
[14], which has a run time complexity of O(n?).
The additional two edges may be determined in
time O(n). Thus, the complexity of this first part
is O(n?).

Next, the nearness «(i, /) is determined for all
edges (i,/). Let T be a minimum 1-tree. From the
definition of a minimum spanning tree, it is easy to
see that a minimum spanning tree 7" (i,j) con-
taining the edge (i,/) may be determined from T
using the following action rules:

(a) If (i,/) belongs to T, then 7" (i,/) is equal

to 7.

(b) Otherwise, if (i,j) has 1 as end node

(i=1vj=1), then T"(i,j) is obtained from

T by replacing the longest of the two edges of

T incident to node 1 with (i, j).

(c) Otherwise, insert (i, j) in 7. This creates a cy-

cle containing (i, j) in the spanning tree part of

T. Then T(i,j) is obtained by removing the

longest of the other edges on this cycle.

Cases a and b are simple. With a suitable rep-
resentation of 1-trees they can both be treated in
constant time.

Case c is more difficult to treat efficiently. The
number of edges in the produced cycles is O(n).
Therefore, with a suitable representation it is
possible to treat each edge with time complexity
O(n). Since O(n?) edges must be treated this way,
the total time complexity becomes O(#*), which is
unsatisfactory.

However, it is possible to obtain a total com-
plexity of O(n*) by exploiting a simple relation
between the a-values [15,16].

Let f(i,j) denote the length of the edge to be
removed from the spanning tree when edge (i, /) is
added. Thus «(i,j) = c(i,j) — p(i,j). Then the
following fact may be exploited (see Fig. 6). If
(j1,/2) 1s an edge of the minimum spanning tree, i
is one of the remaining nodes and j, is on that cycle
that arises by adding the edge (i, j») to the tree,
then f(i, j,) may be computed as the maximum of

B, j1) and c(j1, ja)-

Fig. 6. B(i, j») may be computed from f(i, j1).
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Thus, for a given node i all the values
p(i,j),j=1,2,...,n, can be computed with a time
complexity of O(n), if only the remaining nodes are
traversed in a suitable sequence. It can be seen that
such a sequence is produced as a byproduct of
Prim’s algorithm for constructing minimum span-
ning trees, namely a topological order, in which
every node’s descendants in the tree are placed
after the node. The total complexity now becomes
o(n?).

Fig. 7 sketches in C-style notation an algorithm
for computing f(i,j) for i # 1, j#1, i #j. The
algorithm assumes that the father of each node j in
the tree, dad[j], precedes the node (i.e.,
dad[j] =i =1 <)).

Unfortunately this algorithm needs space O(n?)
for storing f-values. Some space may be saved by
storing the ¢- and ff-values in one quadratic ma-
trix, so that, for example, the c-values are stored in
the lower triangular matrix, while the S-values are
stored in the upper triangular matrix. For large
values of n, however, storage limitations may
make this approach impractical.

Half of the space may be saved if the c-values
are not stored, but computed when needed (for

for (i = 2; i < n; i++) {
Brilfil = - ;
for (j = i+l; j <= n; j++)
Bli1 31 = B3] [1] = max(B[i] [dad[j]], c(j,dad[]l));

Fig. 7. Computation of (i,j) fori # 1, j #1,i # j.

for (1 = 2; 1 <= n; i++)
mark([i] = O;
for (i = 2; 1 <= n; i++) {
bli]l = - ;
for (k = i; k = 2; k = §) {
j = dadl[k];
b[j] = max(blk], c(k,3j));
mark [j] = 1i;

}
for (j = 2; j <= n; j++) {
if (5 1= 1) {

if (mark([j] != 1)
bl[j] = max(bldad[jl], c(j,dadl[]j)]);
/* a(i,j) is now available as c(i,j) - bl[j] */

}

Fig. 8. Space efficient computation of o.

example as Euclidean distances). The question
is whether it is also possible to save the space
needed for the p-values. At first sight it would
seem that the f-values must be stored in order to
achieve O(n*) time complexity for their computa-
tion. That this is not the case will now be
demonstrated.

The algorithm, given in Fig. 8, uses two one-
dimensional auxiliary arrays, b and mark. Array b
corresponds to the f-matrix but only contains f-
values for a given node 1, i.e., b[j] = (i, /). Array
mark is used to indicate that b[j] has been com-
puted for node 1.

The determination of b[j] is done in two
phases. First, b[j] is computed for all nodes j on
the path from node i to the root of the tree (node
2). These nodes are marked with i. Next, a for-
ward pass is used to compute the remaining b-
values. The a-values are available in the inner
loop.

It is easy to see that this algorithm has time
complexity O(n?) and uses space O(n).

The o-values provide a good estimate of the
edges’ chances of belonging to an optimal tour.
The smaller o is for an edge, the more promising is
this edge. Using a-nearness it is often possible to
limit the search to relative few of the o-nearest
neighbors of a node, and still obtain an optimal
tour. Computational tests have shown that the -
measure provides a better estimate of the likeli-
hood of an edge being optimal than the usual c-
measure. For example, for the 532-city problem
the worst case is an optimal edge being the 22nd c-
nearest edge for a node, whereas the worst case
when using the a-measure is an optimal edge being
the 14th o-nearest. The average rank of the opti-
mal edges among the candidate edges is reduced
from 2.4 to 2.1.

This seems to be quite satisfactory. However,
the a-measure can be improved substantially by
making a simple transformation of the original
cost matrix. The transformation is based on the
following observations [13]:

1. Every tour is a 1-tree. Therefore the length of a
minimum 1-tree is a lower bound on the length
of an optimal tour.

2. If the length of all edges incident to a node are
changed with the same amount, z, any optimal
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tour remains optimal. Thus, if the cost matrix
C = (c;;) is transformed to D = (d;;), where

dj = cij +m; + mj,

then an optimal tour for the D is also an opti-
mal tour for C. The length of every tour is in-
creased by 2> 7. The transformation leaves the
TSP invariant, but usually changes the mini-
mum I-tree.

3. If T, is a minimum I-tree with respect to D,
then its length, L(T;), is a lower bound on the
length of an optimal tour for D. Therefore
w(n) = L(T,) — 2> = is lower bound on the
length of an optimal tour for C.

The aim is now to find a transformation,

C — D, given by the vector n = (my,7y,...,7,),
that maximizes the lower bound w(n) = L(T;)
—227'51‘.

If T, becomes a tour, then the exact optimum
has been found. Otherwise, it appears, at least in-
tuitively, that if w(w)>w(0), then a-values com-
puted from D are better estimates of edges being
optimal than «-values computed from C.

A suitable method for maximizing w(r) is sub-
gradient optimization [13]. It is an iterative method
in which the maximum is approximated by step-
wise changes of 7.

At each step 7 is changed in the direction of the
subgradient, i.e., 7! = 7f 4+ v, where v* is a
subgradient vector, and * is a positive scalar,
called the step size.

For the actual maximization problem it can be
shown that v = d* —2 is a subgradient vector,
where d* is a vector having as its elements the
degrees of the nodes in the current minimum 1-
tree. This subgradient makes the algorithm strive
towards obtaining minimum 1-trees with node
degrees equal to 2, i.e., minimum 1-trees that are
tours. Edges incident to a node with degree 1 are
made shorter. Edges incident to a node with degree
greater than 2 are made longer. Edges incident to a
node with degree 2 are not changed.

The n-values are often called penalties. The
determination of a (good) set of penalties is called
an ascent.

The choice of step size is a very crucial decision
from the viewpoint of algorithmic efficiency or

even adequacy. Whether convergence is guaran-

teed is often not important, as long as good ap-

proximations can be obtained in a short time.
No general methods to determine an optimum
strategy for the choice of step size are known.

However, many strategies have been suggested

that are quite effective in practice [17-22]. These

strategies are heuristics, and different variations
have different effects on different problems. In the
present implementation of the modified Lin—Ker-
nighan algorithm the following strategy was cho-
sen (inspired by Crowder [18] and Helbig-Hansen

and Krarup [22]):

e The step size is constant for a fixed number of
iterations, called a period.

e When a period is finished, both the length of the
period and the step size are halved.

e The length of the first period is set to n/2, where
n is the number of cities.

e The initial step size, #°, is set to 1, but is doubled
in the beginning of the first period until W does
not increase, i.e., w(nt) <w(r*~!). When this
happens, the step size remains constant for the
rest of the period.

o If the last iteration of a period leads to an incre-
ment of W, then the period is doubled.

e The algorithm terminates when either the step
size, the length of the period or v* becomes zero.
Furthermore, the basic subgradient algorithm

has been changed on two points (inspired by Held

and Karp [13]):

e The updating of =, ie., 7
placed by

k1 — gk 4 ok is re-

Ty = 7+ £5(0.70F +0.30571),
where v =1,

e The special node for the 1-tree computations is
not fixed. A minimum I-tree is determined by
computing a minimum spanning tree and then
adding an edge corresponding to the second
nearest neighbor of one of the leaves of the tree.
The leaf chosen is the one that has the longest
second nearest neighbor distance.

Practical experiments have shown that these
changes lead to better bounds.

Having found a penalty vector n, that maxi-
mizes w(rn), the transformation given by n of the
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original cost matrix C will often improve the o-
measure substantially. For example, for the 532-
city problem every edge of the optimal tour is
among the 5 a-nearest neighbors for at least one of
its endpoints. The improvement of the a-measure
reduces the average rank of the optimal edges
among the candidate edges from 2.1 to 1.7. This is
close to the ideal value of 1.5 (when every optimal
edge has rank 1 or 2).

The transformation of the cost matrix has the
effect that optimal edges come ‘nearer’, when
measured by their o-values. The transformation
‘conditions’ the problem, so to speak. Therefore,
the transformed matrix is also used during the
Lin—Kernighan search process. Most often the
quality of the solutions is improved by this means.

The greatest advantage of the a-measure,
however, is its usefulness for the construction of
the candidate set. By using the o-measure the
cardinality of the candidate set may generally be
small without reducing the algorithm’s ability to
find short tours. Thus, in all test problems the al-
gorithm was able to find optimal tours using as
candidate edges the 5 a-nearest edges incident to
each node. Most of the problems could even be
solved when search was restricted to only the 4 o-
nearest edges.

The candidate edges of each node are sorted in
ascending order of their o-values. If two edges
have the same a-value, the one with the smallest
cost, ¢;;, comes first. This ordering has the effect
that candidate edges are considered for inclusion
in a tour according to their ‘promise’ of belonging
to an optimal tour. Thus, the x-measure is not only
used to /imit the search, but also to focus the search
on the most promising areas.

To speed up the search even more, the algorithm
uses a dynamic ordering of the candidates. Each
time a shorter tour is found, all edges shared by this
new tour and the previous shortest tour become the
first two candidate edges for their end nodes.

This method of selecting candidates was inspired
by Stewart [23], who demonstrated how minimum
spanning trees could be used to accelerate 3-opt
heuristics. Even when subgradient optimization is
not used, candidate sets based on minimum span-
ning trees usually produce better results than
nearest neighbor candidate sets of the same size.

Johnson [9] in an alternative implementation of
the Lin—Kernighan algorithm used precomputed
candidate sets that usually contained more than 20
(ordinary) nearest neighbors of each node. The
problem with this type of candidate set is that the
candidate subgraph need not be connected even
when a large fraction of all edges is included. This
is, for example, the case for geometrical problems
in which the point sets exhibit clusters. In contrast,
a minimum spanning tree is (by definition) always
connected.

Other candidate sets may be considered. An
interesting candidate set can be obtained by ex-
ploiting the Delaunay graph [24,25]. The Dela-
unay graph is connected and may be computed in
linear time, on the average. A disadvantage of
this approach, however, is that candidate sets can
only be computed for geometric problem in-
stances. In contrast, the a-measure is applicable in
general.

4.2. Breaking of tour edges

A candidate set is used to prune the search for
edges, Y, to be included in a tour. Correspond-
ingly, the search of edges, X, to be excluded from a
tour may be restricted. In the actual implementa-
tion the following simple, yet very effective, prun-
ing rules are used:

1. The first edge to be broken, x;, must not belong
to the currently best solution tour. When no so-
lution tour is known, that is, during the deter-
mination of the very first solution tour, X
must not belong to the minimum 1-tree.

2. The last edge to be excluded in a basic move
must not previously have been included in the
current chain of basic moves.

The first rule prunes the search already at level
1 of the algorithm, whereas the original algorithm
of Lin and Kernighan prunes at level 4 and higher,
and only if an edge to be broken is a common edge
of a number (2-5) of solution tours. Experiments
have shown that the new pruning rule is more ef-
fective. In addition, it is easier to implement.

The second rule prevents an infinite chain of
moves. The rule is a relaxation of Rule 4 in Section
3.2.



K. Helsgaun | European Journal of Operational Research 126 (2000) 106—130 117

4.3. Basic moves

Central in the Lin—Kernighan algorithm is the
specification of allowable moves, that is, which
subset of r-opt moves to consider in the attempt to
transform a tour into a shorter tour.

The original algorithm considers only r-opt
moves that can be decomposed into a 2- or 3-opt
move followed by a (possibly empty) sequence of
2-opt moves. Furthermore, the r-opt move must be
sequential and feasible, that is, it must be a con-
nected chain of edges where edges removed alter-
nate with edges added, and the move must result in
a feasible tour. Two minor deviations from this
general scheme are allowed. Both have to do with
4-opt moves. First, in one special case the first
move of a sequence may be a sequential 4-opt
move; the following moves must still be 2-opt
moves. Second, non-sequential 4-opt moves are
tried when the tour can no longer be improved by
sequential moves (see Fig. 4).

The new modified Lin-Kernighan algo-
rithm revises this basic search structure on several
points.

First and foremost, the basic move i1s now a
sequential 5-opt move. Thus, the moves considered
by the algorithm are sequences of one or more 5-
opt moves. However, the construction of a move is
stopped immediately if it is discovered that a close
up of the tour results in a tour improvement. In
this way the algorithm attempts to ensure 2-, 3-, 4-
as well as 5-opt.

Using a 5-opt move as the basic move broadens
the search and increases the algorithm’s ability to
find good tours, at the expense of an increase of
running times. However, due to the use of small
candidate sets, run times are only increased by a
small factor. Furthermore, computational experi-
ments have shown that backtracking is no longer
necessary in the algorithm (except, of course, for
the first edge to be excluded, x;). The removal of
backtracking reduces runtime and does not
degrade the algorithm’s performance significantly.
In addition, the implementation of the algorithm is
greatly simplified.

The new algorithm’s improved performance
compared with the original algorithm is in accor-
dance with observations made by Christofides and

Eilon [8]. They observed that 5-opt should be ex-

pected to yield a relatively superior improvement

over 4-opt compared with the improvement of 4-

opt over 3-opt.

Another deviation from the original algorithm
is found in the examination of non-sequential ex-
changes. In order to provide a better defense
against possible improvements consisting of non-
sequential exchanges, the simple non-sequential 4-
opt move of the original algorithm has been re-
placed by a more powerful set of non-sequential
moves.

This set consists of:
¢ any non-feasible 2-opt move (producing two cy-

cles) followed by any 2- or 3-opt move, which

produces a feasible tour (by joining the two cy-
cles);

e any non-feasible 3-opt move (producing two
cycles) followed by any 2-opt move, which pro-
duces a feasible tour (by joining the two
zcycles).

As seen, the simple non-sequential 4-opt move
of the original algorithm belongs to this extended
set of non-sequential moves. However, by using
this set of moves, the chances of finding optimal
tours are improved. By using candidate sets and
the “positive gain criterion’ the time for the search
for such non-sequential improvements of the tour
is small relative to the total running time.

Unlike the original algorithm the search for
non-sequential improvements is not only seen as a
post optimization maneuver. That is, if an im-
provement is found, further attempts are made to
improve the tour by ordinary sequential as well as
non-sequential exchanges.

4.4. Initial tours

The Lin—Kernighan algorithm applies edge ex-
changes several times to the same problem using
different initial tours.

In the original algorithm the initial tours are
chosen at random. Lin and Kernighan concluded
that the use of a construction heuristic only wastes
time. Besides, construction heuristics are usually
deterministic, so it may not be possible to get more
than one solution.



118 K. Helsgaun | European Journal of Operational Research 126 (2000) 106—130

However, the question of whether or not to use a
construction heuristic is not that simple to answer.
Adrabinsky and Syslo [26], for instance, found that
the farthest insertion construction heuristic was
capable of producing good initial tours for the Lin—
Kernighan algorithm. Perttunen [27] found that the
Clarke and Wright savings heuristic [28] in general
improved the performance of the algorithm. Re-
inelt [25] also found that is better not to start with a
random tour. He proposed using locally good tours
containing some major errors, for example the
heuristics of Christofides [29]. However, he also
observed that the difference in performance de-
creases with more elaborate versions of the Lin—
Kernighan algorithm.

Experiments with various implementations of
the new modified Lin—Kernighan algorithm have
shown that the quality of the final solutions does not
depend strongly on the initial tours. However, sig-
nificant reduction in run time may be achieved by
choosinginitial tours that are close to being optimal.

In the present implementation the following
simple construction heuristic is used:

1. Choose a random node 1.
2. Choose a node j, not chosen before, as follows:
If possible, choose j so that
(a) (i,/) is a candidate edge,
(b) a(i,j) =0, and
(c) (i,/) belongs to the current best tour.
Otherwise, if possible, choose j such that (i, j)
is a candidate edge.
Otherwise, choose j among those nodes not
already chosen.
3. Let i =j. If not all nodes have been chosen,

then go to Step 2.

When more than one node may be chosen at
Step 2, the node is chosen at random among the
alternatives. The sequence of chosen nodes con-
stitutes the initial tour.

This construction procedure is fast, and the di-
versity of initial solutions is large enough for the
edge exchange heuristics to find good final solutions.

5. Implementation

The modified Lin—Kernighan algorithm has
been implemented in the programming language

C. The software, approximately 4000 lines of code,
is entirely written in ANSI C and portable across a
number of computer platforms and C compilers.
The following sections describe the most central
techniques employed in the implementation.

5.1. Representation of tours and moves

The representation of tours is a central imple-
mentation issue. The data structure chosen may
have great impact on the run time efficiency. It is
obvious that the major bottleneck of the algorithm
is the search for possible moves (edge exchanges)
and the execution of such moves on a tour.
Therefore, special care should be taken to choose a
data structure that allows fast execution of these
operations.

The data structure should support the following
primitive operations:

1. find the predecessor of a node in the tour with
respect to a chosen orientation (PRED);

2. find the successor of a node in the tour with re-
spect to a chosen orientation (SUC);

3. determine whether a given node is between two
other nodes in the tour with respect to a chosen
orientation (BETWEEN);

4. make a move;

5. undo a sequence of tentative moves.

The necessity of the first three operations stems
from the need to determine whether it is possible
to ‘close’ the tour. The last two operations are
necessary for keeping the tour up to date.

In the modified Lin—Kernighan algorithm a
move consists of a sequence of basic moves, where
each basic move is a 5-opt move (k-opt moves with
k < 4 are made in case an improvement of the tour
is possible).

In order simplify tour updating, the following
fact may be used: Any r-opt move (r=2) is
equivalent to a finite sequence of 2-opt moves
[8,30]. In the case of 5-opt moves it can be shown
that any 5-opt move is equivalent to a sequence of
at most five 2-opt moves. Any 4-opt move as well
as any 3-opt move is equivalent to a sequence of at
most three 2-opt moves.

This is exploited as follows. Any move is exe-
cuted as a sequence of one or more 2-opt moves.
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During move execution, all 2-opt moves are re-
corded in a stack. A bad move is undone by un-
stacking the 2-opt moves and making the inverse
2-opt moves in this reversed sequence.

Thus, efficient execution of 2-opt moves is
needed. A 2-opt move, also called a swap, consists of
moving two edges from the current tour and re-
connecting the resulting two paths in the best pos-
sible way (see Fig. 1). This operation is seen to
reverse one of the two paths. If the tour is repre-
sented as an array of nodes, or as a doubly linked list
of nodes, the reversal of the path takes time O(n).

It turns out that data structures exist that allow
logarithmic time complexity to be achieved [25,31—
34]. These data structures, however, should not be
selected without further notice. The time overhead
of the corresponding update algorithms is usually
large, and, unless the problem is large, typically
more than 1000 nodes, update algorithms based
on these data structures are outperformed by up-
date algorithms based on the array and list struc-
tures. In addition, they are not simple to implement.

In the current implementation of the modified
Lin—Kernighan algorithm a tour may be repre-
sented in two ways, either by a doubly linked list, or
by a two-level tree [34]. The user can select one of
these two representations. The doubly linked list is
recommended for problems with fewer than 1000
nodes. For larger problems the two-level tree
should be chosen.

A worst-case cost of O(y/n) per 2-opt move
may be achieved using the two-level tree repre-
sentation. This is currently the fastest and most
robust representation on large instances that might
arise in practice. The idea is to divide the tour into
roughly /n segments. Each segment is maintained
as a doubly linked list of nodes.

The segments are connected in a doubly linked
list, and each segment contains a sequence number
that represents its position in the list.

All the query operations (PRED, SUC and
BETWEEN) are performed in constant time (as in
the list representation, albeit with slightly larger
constants), whereas the move operations have a
worst-case cost of O(y/n) per move.

The implementation of the operations closely
follows the suggestions given in [34]. See [34, pp.
444-446] for details.

5.2. Distance computations

A bottleneck in many applications is the com-
puting of distances. For example, if Euclidean
distances are used, a substantial part of run time
may be spent in computing square roots.

If sufficient space is available, all distances may
be computed once and stored in a matrix. How-
ever, for large problems, say more than 5000
nodes, this approach is usually not possible.

In the present implementation, distances are
computed once and stored in a matrix, only if the
problem is smaller than a specified maximum di-
mension. For larger problems, the following
techniques are used to reduce run time.

(1) Each candidate edge including its length is
associated to the node from which it emanates. A
large fraction of edges considered during the so-
lution process are candidate edges. Therefore, in
many cases the length of an edge may be found by
a simple search among the candidate edges asso-
ciated with its end nodes.

(2) Computational cheap functions are used in
calculating lower bounds for distances. For ex-
ample, a lower bound for an Euclidean distance
\/dx? +dy? may be quickly computed as the
maximum of |dx| and |dy|. Often a reasonable
lower bound for a distance is sufficient for deciding
that there is no point in computing the true dis-
tance. This may, for example, be used for quickly
deciding that a tentative move cannot possibly
lead to a tour improvement. If the current gain,
plus a lower bound for the distance of a closing
edge, is not positive, then the tour will not be
improved by this move.

(3) The number of distance computations is
reduced by the caching technique described in
[35]. When a distance between two nodes has been
computed the distance is stored in a hash table.
The hash index is computed from the identifica-
tion numbers of the two nodes. Next time the
distance between the same two nodes is to be
computed, the table is consulted to see whether
the distance is still available. See [35] for details.
The effect of using the caching technique was
measured in the solution of a 2392-node problem.
Here optimum was found with about 70 times
fewer ordinary distance calculations than without



120 K. Helsgaun | European Journal of Operational Research 126 (2000) 106—130

the technique, and the running time was more
than halved.

5.3. Reduction of checkout time

When the algorithm has found a local opti-
mum, time is spent to check that no further pro-
gress is possible. This time, called the checkout
time, can be avoided if the same local optimum has
been found before. There is no point in attempting
to find further improvements the situation has
been previously been ‘checked out’. The checkout
time often constitutes a substantial part of the
running time. Lin and Kernighan report checkout
times that are typically 30-50% of running time.

The modified algorithm reduces checkout time
by using the following techniques:

(1) Moves in which the first edge (#,%) to be
broken belongs to the currently best solution tour
are not investigated.

(2) A hashing technique is used. A hash func-
tion maps tours to locations in a hash table. Each
time a tour improvement has been found, the hash
table is consulted to see whether the new tour
happens to be local optimum found earlier. If this
is the case, fruitless checkout time is avoided. This
technique is described in detail in [36].

(3) The concept of the don’t look bit, introduced
by Bentley [37], is used. If for a given choice of ¢,
the algorithm previously failed to find an im-
provement, and if #,’s tour neighbors have not
changed since that time, then it is unlikely that an
improving move can made if the algorithm again
looks at ¢,. This is exploited as follows. Each node
has a don’t look bit, which initially is 0. The bit for
node ¢; is set to 1 whenever a search for an im-
proving move with ¢; fails, and it is set to 0
whenever an improving move is made in which it is
an end node of one of the its edges. In considering
candidates for ¢, all nodes whose don’t look bit is 1
are ignored. This is done in maintaining a queue of
nodes whose bits are zero.

5.4. Speeding up the ascent

Subgradient optimization is used to determine
a lower bound for the optimum. At each step a

minimum 1-tree is computed. Since the number
of steps may be large, it is important to speed
up the computation of minimum 1-trees. For
this purpose, the trees are computed in sparse
graphs.

The first tree is computed in a complete graph.
All remaining trees but the last are computed in a
sparse subgraph determined by the a-measure. The
subgraph consists of a specified number of «-
nearest neighbor edges incident to each node.

Prim’s algorithm [14] is used for computing
minimum spanning trees. Therefore, to achieve a
speed-up it is necessary to quickly find the shortest
edge from a number of edges. In the current im-
plementation a binary heap is used for this pur-
pose.

The combination of these methods results in
fast computation of minimum spanning trees, at
least when the number of candidate edges allowed
for each node is not too large. On the other hand,
this number should not be so small that the lower
bound computed by the ascent is not valid. In the
present implementation, the number is 50 by de-
fault.

6. Computational results

The performance of an approximate algorithm
such as the Lin—Kernighan algorithm can be
evaluated in three ways:

1. by worst-case analysis;
2. by probabilistic (or average-case) analysis;
3. by empirical analysis.

The goal of worst-case analysis is to derive
upper bounds for possible deviations from opti-
mum; that is, to provide quality guarantees for
results produced by the algorithm.

All known approximate algorithms for the
TSP have rather poor worst-case behavior. As-
sume, for example, that the problems to be solved
are metric (the triangle inequality holds). Then
the approximate algorithm known to have the
best worst-case behavior is the algorithm of
Christofides [29]. This algorithm guarantees a
tour length no more than 50% longer than opti-
mum. For any r-opt algorithm, where r<n/4 (n
being the number of cities), problems may be



K. Helsgaun | European Journal of Operational Research 126 (2000) 106—130 121

constructed such that the error is almost 100%
[38]. For non-metric problems it can proven that
it is impossible to construct an algorithm of
polynomial complexity which find tours whose
length is bound by a constant multiple of the
optimal tour length [39].

The purpose of the second method, probabi-
listic analysis, is to evaluate average behavior of
the algorithms. For example, for an approximate
TSP algorithm probability analysis can used be to
estimate the expected error for large problem
sizes.

The worst-case as well as the probability ap-
proach, however, have their drawbacks. The
mathematics involved may be very complex and
results achieved by these methods may often be of
little use when solving practical instances of TSP.
Statements concerning problems that almost cer-
tainly do not occur in practice (‘pathological’
problems, or problems with an ‘infinite’ number of
cities) will often be irrelevant in connection with
practical problem solving.

In this respect the third method, empirical
analysis, seems more appropriate. Here the algo-
rithm is executed on a number of test problems,
and the results are evaluated, often in relation to
optimal solutions. The test problems may be gen-
erated at random, or they may be constructed in a
special way. If the test problems are representative
for those problems the algorithm is supposed to
solve, the computations are useful for evaluating
the appropriateness of the algorithm.

Section 6.1 documents computational results of
the modified Lin—Kernighan algorithm. The re-
sults include the qualitative performance and the
run time efficiency of the current implementation.
Run times are measured in seconds on a 300 MHz
G3 Power Macintosh.

The performance of the implementation has
been evaluated on the following spectrum of
problems:

1. Symmetric problems.

2. Asymmetric problems.

3. Hamiltonian cycle problems.
4. Pathological problems.

Each problem has been solved by a number of
independent runs. Each run consist of a series of
trials, where in each trial a tour is determined by

the modified Lin—Kernighan algorithm. The trials
of a run are not independent, since edges belong-
ing to the best tour of the current run are used to
prune the search.

In the experiments the number of runs varies.
In problems with less than 1000 cities the number
of runs is 100. In larger problems the number of
runs is 10.

The number of trials in each run is equal to the
dimension of the problem (the number of cities).
However, for problems where optimum is known,
the current series of trials is stopped if the algo-
rithm finds optimum.

6.1. Symmetric problems

TSPLIB [40] is a library, which is meant
to provide researchers with a set of sample in-
stances for the TSP (and related problems). TSP-
LIB is publicly available via FTP from
softlib.rice.edu and contains problems from
various sources and with various properties.

At present, instances of the following problem
classes are available: symmetric TSPs, asymmetric
TSPs, Hamiltonian cycle problems, sequential or-
dering problems, and capacitated vehicle routing
problems. Information on the length of optimal
tours, or lower and upper bounds for this length, is
provided (if available).

The library contains 111 symmetric TSPs,
ranging from a problem with 14 cities to a problem
with 85,900 cities. The performance evaluation
that follows is based on those problems for which
the optimum is known. Today there are 104
problems of this type in the library, the largest
being a problem with 13,509 cities.

The test results are reported in Table 1.

The table gives the problem names along with
the number of cities, the problem type, the optimal
tour length, the ratio of runs succeeding in finding
the optimal solution, the minimum and average
number of trials in a run, the minimum and av-
erage gap between the length of the best solution
obtained and optimum as a percentage of opti-
mum, the preprocessing time, and the minimum
and average time used for search in seconds per
run.
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Table 1
Performance for symmetric problems
Name Cities  Type Optimum  Success  Trials Gap (%) Time (s)

Min Average Min Average Max Pre Min Average
a280 280 EUC_2D 2579 100/100 1 1.0 0.000  0.000 0.000 0.7 0.0 0.1
ali535 535 GEO 202310  100/100 1 8.0 0.000  0.000 0.000 4.0 0.2 0.7
att48 48 ATT 10628  100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
att532 532 ATT 27686 98/100 1 66.2 0.000  0.001 0.072 2.9 0.2 3.6
bayg29 29 GEO 1610  100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
bays29 29 GEO 2020  100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
berlin52 52 EUC_2D 7542 *1/0 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
bier127 127 EUC_2D 118282  100/100 1 1.1 0.000  0.000 0.000 0.3 0.0 0.0
brazil58 58 MATRIX 25395 100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
brgl180 180 MATRIX 1950  100/100 1 3.3 0.000  0.000 0.000 0.3 0.0 0.0
burmal4 14 GEO 3323 *1/0 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
ch130 130 EUC_2D 6110  100/100 1 3.0 0.000  0.000 0.000 0.2 0.0 0.1
ch150 150 EUC_2D 6528  62/100 1 62.9 0.000  0.023 0.077 0.3 0.0 0.4
d198 198 EUC_2D 15780  100/100 1 13.6 0.000  0.000 0.000 0.4 0.2 1.0
d493 493 EUC_2D 35002  100/100 1 45.8 0.000  0.000 0.000 2.5 0.2 32
d657 657 EUC_2D 48912  100/100 1 85.8 0.000  0.000 0.000 5.1 0.3 3.3
d1291 1291 EUC_2D 50801  8/10 152 584.2 0.000  0.033 0.167 19.0 23.1 59.8
d1655 1655 EUC_2D 62128  10/10 98  494.6 0.000  0.000 0.000 47.0 10.5 41.1
dantzigd2 42 MATRIX 699  100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
dsj1000 1000 CEIL_2D 18659688  7/10 90 514.1 0.000  0.035 0.116 123 13.1 55.1
eil51 51 EUC_2D 426  100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
eil76 76 EUC_2D 538  100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
eill01 101 EUC_2D 629  100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
fl417 417 EUC_2D 11861  88/100 1 64.2 0.000  0.052 0.430 2.0 1.2 12.4
11400 1400 EUC_2D 20127  1/10 13 1261.3 0.000 0.162 0.199  36.5 13.1  583.3
11577 1577 EUC_2D 22249  2/10 134 1350.1 0.000  0.046 0.063 452 120.2  1097.5
13795 3795 EUC_2D 28772 4/10 1576 3167.5 0.000  0.072 0.191 2209 24489 5666.4
fnl4461 4461 EUC_2D 182566  6/10 665 2767.3 0.000  0.001 0.003 332.7 284.1 1097.3
fri26 26 MATRIX 937  100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
gil262 262 EUC_2D 2378 100/100 1 13.3 0.000  0.000 0.000 0.6 0.1 0.4
grl7 17 MATRIX 2085  *1/0 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
gr2l 21 MATRIX 2707  *1/0 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
ar24 24 MATRIX 1272 100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
grd8 48 MATRIX 5046  100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
er96 96 GEO 55209  100/100 1 10.2 0.000  0.000 0.000 0.2 0.0 0.1
gr120 120 MATRIX 6942 100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
gr137 137 GEO 69853 100/100 1 1.0 0.000  0.000 0.000 0.4 0.0 0.0
gr202 202 GEO 40160  100/100 1 1.0 0.000  0.000 0.000 0.4 0.0 0.1
gr229 229 GEO 134602  12/100 6 216.6 0.000  0.009 0.010 0.7 0.2 1.7
grd31 431 GEO 171414 17/100 81 4014 0.000  0.053 0.077 2.0 44 13.1
gro66 666 GEO 294358  30/100 25 5319 0.000  0.026 0.040 4.8 2.0 18.8
hk48 48 MATRIX 11461  100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
kroA100 100 EUC_2D 21282 100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
kroB100 100 EUC_2D 22141  100/100 1 1.4 0.000  0.000 0.000 0.1 0.0 0.1
kroC100 100 EUC_2D 20749  100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
kroD100 100 EUC_2D 21294 100/100 1 1.3 0.000  0.000 0.000 0.2 0.0 0.0
kroE100 100 EUC_2D 22068  99/100 1 10.7 0.000  0.002 0.172 0.2 0.0 0.2
kroA150 150 EUC_2D 26524 100/100 1 1.2 0.000  0.000 0.000 0.3 0.0 0.1
kroB150 150 EUC_2D 26130  55/100 1 97,7 0.000  0.003 0.008 0.3 0.1 0.8
kroA200 200 EUC_2D 29368  100/100 1 2.1 0.000  0.000 0.000 0.7 0.1 0.2
kroB200 200 EUC_2D 29437 100/100 1 2.0 0.000  0.000 0.000 0.4 0.0 0.1



K. Helsgaun | European Journal of Operational Research 126 (2000) 106—130 123

Table 1 (Continued)

Name Cities Type Optimum  Success  Trials Gap (%) Time (s)

Min Average Min Average Max Pre Min Average

lin105 105 EUC_2D 14379 100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
lin318 318 EUC_2D 42029  71/100 1 154.1 0.000  0.076 0.271 1.5 0.1 2.0
linhp318 318 EUC_2D 41345 100/100 1 24 0.000  0.000 0.000 1.2 0.0 0.1
nrwl379 1379 EUC_2D 56638  3/10 414 11485 0.000  0.006 0.009 233 20.2 69.3
p654 654  EUC_2D 34643 100/100 1 46.6 0.000  0.000 0.000 4.5 1.1 9.7
pas61 561 MATRIX 2763 99/100 | 40.8 0.000  0.001 0.072 3.2 0.2 3.5
pcb44?2 442 EUC_2D 50778  93/100 1 1027 0.000  0.001 0.014 2.0 0.1 4.0
pcbl173 1173 EUC_2D 56892  8/10 2 4752 0.000  0.002 0.009 15.7 0.6 14.6
pcb3038 3038 EUC_2D 137694  9/10 121 1084.7 0.000  0.000 0.004 139.8 39.1 3237
pla7397 7397 CEIL_2D 23260728  7/10 1739 4588.4 0.000  0.001 0.004 1065.6  4507.9 13022.0
pr76 76 EUC_2D 108159  100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.1
pr107 107 EUC_2D 44303  100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
pri24 124 EUC_2D 59030  100/100 1 1.4 0.000  0.000 0.000 0.2 0.0 0.1
pr136 136 EUC_2D 96772 100/100 1 1.0 0.000  0.000 0.000 0.3 0.1 0.2
prl44 144  EUC_2D 58537  100/100 1 1.0 0.000  0.000 0.000 0.3 0.1 0.1
pri52 152 EUC_2D 73682  100/100 1 3.4 0.000  0.000 0.000 0.5 0.1 0.1
pr226 226 EUC_2D 80369  100/100 1 1.0 0.000  0.000 0.000 0.6 0.1 0.1
pr264 264  EUC_2D 49135 100/100 1 7.5 0.000  0.000 0.000 0.6 0.2 0.5
pr299 299 EUC_2D 48191  100/100 1 4.5 0.000  0.000 0.000 0.9 0.3 0.8
pr4d39 439 EUC_2D 107217 98/100 1 72.8 0.000  0.001 0.041 2.0 0.1 1.6
pr1002 1002 EUC_2D 259045  10/10 38 215.1 0.000  0.000 0.000 15.6 1.0 3.4
pr2392 2392 EUC_2D 378032  10/10 37 396.6 0.000  0.000 0.000 84.6 8.7 54.5
rat99 99 EUC_2D 1211 100/100 1 1.0 0.000  0.000 0.000 0.2 0.0 0.0
rat195 195 EUC_2D 2323 100/100 1 3.5 0.000  0.000 0.000 0.3 0.1 0.4
rat575 575 EUC_2D 6773 77/100 2 290.6 0.000  0.004 0.030 32 0.4 8.2
rat783 783 EUC_2D 8806  100/100 1 6.6 0.000  0.000 0.000 6.5 0.1 0.3
rd100 100 EUC_2D 7910  100/100 1 1.1 0.000  0.000 0.000 0.1 0.0 0.0
rd400 400 EUC_2D 15281  99/100 1 51.0 0.000  0.000 0.020 1.7 0.1 1.1
11304 1304 EUC_2D 252948  8/10 14 840.0 0.000  0.019 0.161 19.9 1.1 35.8
rl1323 1323 EUC_2D 270199  1/10 244 1215.1 0.000 0.018 0.048 20.8 10.9 51.6
11889 1889 EUC_2D 316536 4/10 1 1418.1 0.000  0.002 0.004  49.6 1.2 11338
15915 5915 EUC_2D 565530  0/10 5915 5915.0 0.009  0.028 0.041 6204 1886.5 2734.3
15934 5934  EUC_2D 556045  0/10 5934 5934.0 0.006  0.089 0.179 6293  2704.0 3548.9
sil75 175 MATRIX 21407  100/100 1 6.8 0.000  0.000 0.000 0.3 0.1 0.2
si535 535 MATRIX 48450  33/100 70 460.8 0.000  0.006 0.017 2.8 5.2 30.0
si1032 1032 MATRIX 92650  2/10 49 844.6 0.000  0.057 0.071 12.6 34 20.1
st70 70 EUC_2D 675 100/100 1 1.0 0.000  0.000 0.000 0.1 0.0 0.0
swiss42 42 MATRIX 1273 100/100 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
ts225 225 EUC_2D 126643  100/100 1 1.0 0.000  0.000 0.000 0.5 0.1 0.1
tsp225 225 EUC_2D 3919  100/100 1 5.8 0.000  0.000 0.000 0.5 0.1 0.3
uls9 159 EUC_2D 42080  100/100 1 1.0 0.000  0.000 0.000 0.3 0.0 0.0
us74 574  EUC_2D 36905  91/100 1 1114 0.000  0.007 0.081 33 0.2 32
u724 724  EUC_2D 41910  98/100 4 162.5 0.000  0.000 0.005 52 0.6 6.8
ul060 1060 EUC_2D 224094  9/10 2 3059 0.000  0.000 0.003 12.2 1.6 38.0
ul432 1432 EUC_2D 152970  10/10 3 59.9 0.000  0.000 0.000 25.7 0.8 8.0
ul8l7 1817 EUC_2D 57201  2/10 905 1707.8 0.000  0.078 0.124 429 199.6 2529
u2152 2152 EUC_2D 64253 5/10 491 1706.5 0.000  0.029 0.089 65.2 85.0 2742
u2319 2319 EUC_2D 234256  10/10 1 3.2 0.000  0.000 0.000 86.2 0.5 2.6
ulysses16 16 GEO 6859  *1/0 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
ulysses22 22 GEO 7013 *1/0 1 1.0 0.000  0.000 0.000 0.0 0.0 0.0
usal3509 13509 EUC-2D 19982859  0/10 13509 13509.0 0.004  0.008 0.013 3785.2 39808.0 43814.5
vm1084 1084  EUC_2D 239297  7/10 8 4252 0.000  0.007 0.022 12.7 1.9 28.6
vm1748 1748 EUC_2D 336556  4/10 65 1269.6 0.000  0.023 0.054  40.6 7.3 1016.1
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The problem type specifies how the distances
are given. The entry MATRIX indicates that
distances are given explicitly in matrix form (as
full or triangular matrix). The other entry names
refer to functions for computing the distances
from city coordinates. The entries EUC_2D and
CEIL_2D both indicates that distances are the 2-
dimensional Euclidean distances (they differ in
their rounding method). GEO indicates geo-
graphical distances on the Earth’s surface, and
ATT indicates a special ‘pseudo-Euclidean’ dis-
tance function. All distances are integer numbers.
See [40] for details.

The preprocessing time is the time used for
reading the problem and determining the candi-
date set (using subgradient optimization).

For example, for the problem att532 of Padberg
and Rinaldi [11] the optimal solution was deter-
mined in 98 runs out of 100. The minimum num-
ber of trials made to find optimum was 1. The
average number of trials in a run was 66.2 (a run is
stopped if the optimal solution is found, or the
number of trials made equals the number of cities).
The average gap between the length of the best
solution obtained and the optimum as a percent-
age of the optimum was 0.001%. The maximum
gap was 0.072%. The preprocessing time was 2.9
seconds. Finally, the minimum and average CPU
time used in a run was 0.2 and 3.6 seconds, re-
spectively.

For some of the small problems (berlin52,
burmal4, fri26, grl7, gr2l, gr24, ulyssesl6 and
ulysses22) optima were determined by subgradient
optimization (marked with a * in the Success col-
umn).

The table shows that optima were found with
the default parameter settings for 101 of the
problems.

Optima for the remaining 3 problems (r15915,
r15934 and wusal3,509) were obtained in the
following way. First, for each of the problems
a short tour was found using the default
settings. The search was then continued, but the
following rule was added to the set of pruning
rules:

e The last link to be removed in a non-gainful
move (xs in a 5-opt move) must not belong to
the shortest available tour.

Optima for r15915, 5934 and usal3,509 were
found by this means using approximately 2 days, 1
day and 3 days of CPU time, respectively.

In addition to these problems, TSPLIB con-
tains 7 symmetric problems for which no opti-
mum solutions are known today. The dimension
of these problems varies from 2103 to 85,900
cities.

Table 2 lists for each of these problems the
currently best known lower and upper bound
(published in TSPLIB, June 1998).

When the new algorithm was executed on these
problems, it found tour lengths equal to the best
known upper bounds for 1 of the problems
(d2103). However, for the remaining 6 problems,
the algorithm was able find tours shorter than the
best known upper bounds. These new upper
bounds are listed in Table 3.

The new upper bound for the largest of these
problems, pla85900, was found using two weeks of
CPU time.

It is difficult to predict the running time needed
to solve a given problem with the algorithm. As
can be seen from Table 1, the size alone is not
enough. One problem may require much more
running time than a larger problem.

However, some guidelines may be given. Ran-
dom problems may be used to provide estimates of
running times. By solving randomly generated
problems of different dimensions and measuring
the time used to solve these problems, it is possible
to get an idea of how running time grows as a
function of problem dimension.

An algorithm for randomly generating TSP
with known optimal tours, described by Arthur
and Frendewey [41], was used for this purpose.
The test results [42] indicated that the average
running time of the algorithm is approximately
O(n2.2).

Another method often used in studying the
average performance of TSP heuristics is to solve
problem instances consisting of random points
within a rectangle under the Euclidean metric. The
instances are solved for increasing values of n and
compared to the theoretical value for the expected
length of an optimal tour (Loy). A well-known
formula is Loy (,4) = K+/nv/A when n cities are
distributed uniformly randomly over a rectangular
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Table 2
Problems in TSPLIB with unknown optimal solutions

Name Cities Type Lower bound Upper bound
brd14051 14051 EUC_2D 469272 469445
d2103 2103 EUC_2D 80330 80450
d15112 15112 EUC_2D 1572863 1573152
d18512 18512 EUC_2D 645092 645300
pla33810 33810 CEIL_2D 65960739 66116530
pla85900 85900 CEIL_2D 142244225 142482068
r111849 11849 EUC_2D 923132 923368
ITable 3d o Crtij = Crnii = Cij fori=1,2,...,n,
mproved upper bounds j= 1,2,....n,

Name New upper bound and i # j

brd14051 469395 i =Cnu=-M for i=12,...n
d15112 1573089 . =M otherwise,

d18512 645250 J

pla33810 66060236 ' .

plag5900 142416327 where M is a sufficiently large number, e.g.,
r111849 923307 M = max(c;;).

area of A units [43]. That is, the ratio of the op-
timal tour length to \/n\/4 approaches a constant
K for N — oo. Experiments of Johnson, McGeoch
and Rothenberg [44] suggest that K is approxi-
mated by 0.7124.

Fig. 9 shows the results obtained when the
modified Lin—Kernighan algorithm was used to
solve such problems on a 10* x 10* square for n
ranging from 500 to 5000 and # increasing by 500.
The figure depicts the tour length divided by
/1 * 10%. These results are consistent with the es-
timate K = 0.7124 for large n.

6.2. Asymmetric problems

The implemented algorithm is primarily in-
tended for solving symmetric TSPs. However, any
asymmetric problem may be transformed into a
symmetric problem and therefore be solved by the
algorithm.

The transformation method of Jonker and
Volgenant [45] transforms a asymmetric problem
with n nodes into a problem 2x nodes. Let C=(c;))
denote the nxn cost matrix of the asymmetric
problem. Then let C' = (¢};) be the 2nXx2n sym-
metric matrix computed as follows:

It is easy to prove that any optimal solution of
the new symmetric problem corresponds to an
optimal solution of the original asymmetric prob-
lem.

An obvious disadvantage of the transformation
is that it doubles the size of the problem. There-
fore, in practice it is more advantageous to use
algorithms dedicated for solving asymmetric
problems. However, as can been seen from Table 4
the performance of the modified Lin—Kernighan
algorithm for asymmetric problems is quite im-
pressive. The optimum was obtained for all

0736 - @
0734 —
0.732 — L4
0.730 —
0.728 —
0726 — Py
0.724 — ®
0722 — ®
0720 —
0718 =
0.716 — CIPY ®e
0.714 — ° L4
0712 — )
0 2,000 4,o]oo 6,000 8,000 10,300
Nodes (n)

Fig. 9. Solutions of random Euclidean problems on a square.
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Table 4
Performance for asymmetric problems.
Name Cities  Optimum Success Trials Gap (%) Time (s)

Min  Average Min Average Max Pre Min Average
brl7 17 39 100/100 1 1.0 0.000 0.000 0.000 0.0 0.0 0.0
ft53 53 6905 100/100 1 8.0 0.000 0.000 0.000 0.1 0.0 0.0
ft70 70 38673 100/100 1 1.6 0.000 0.000 0.000 0.2 0.0 0.0
ftv33 34 1286 100/100 1 1.0 0.000 0.000 0.000 0.1 0.0 0.0
ftv3s 36 1473 47/100 1 43.6 0.000 0.072 0.136 0.1 0.0 0.1
ftv38 39 1530 53/100 1 40.3 0.000 0.061 0.131 0.1 0.0 0.1
ftvd4 45 1613 100/100 1 2.8 0.000 0.000 0.000 0.1 0.0 0.0
ftv47 48 1776 100/100 1 1.5 0.000 0.000 0.000 0.1 0.0 0.0
ftvss 56 1608 100/100 1 35 0.000 0.000 0.000 0.1 0.0 0.0
ftve4 65 1839 100/100 1 3.6 0.000 0.000 0.000 0.2 0.0 0.0
ftv70 71 1950 100/100 1 3.6 0.000 0.000 0.000 0.2 0.0 0.0
ftv170 171 2755 88/100 1 119.7 0.000 0.039 0.327 1.1 0.0 1.0
krol24p 100 36230 95/100 1 24.6 0.000 0.002 0.030 0.3 0.0 0.1
p43 43 5620 21/100 1 72.2 0.000 0.014 0.018 0.0 0.0 0.5
rbg323 323 1326 97/100 17 116.3 0.000 0.018 0.679 413 1.9 8.5
rbg358 358 1163 99/100 19 96.8 0.000 0.060 6.019 105.1 2.5 8.3
rbgd03 403 2465 100/100 19 87.5 0.000 0.000 0.000 183.2 2.6 11.3
rbgd43 443 2720 100/100 18 105.2 0.000 0.000 0.000 237.8 2.5 12.6
ry48p 48 1442 99/100 1 9.8 0.000 0.002 0.166 0.1 0.0 0.0

asymmetric problems of TSPLIB. The largest of
these problems, rbgd43, has 443 nodes (thus, the
transformed problem has 886 nodes).

6.3. Hamiltonian cycle problems

The Hamiltonian cycle problem is the prob-
lem of deciding if a given undirected graph
contains a cycle. The problem can be answered
by solving a symmetric TSP in the complete
graph where all edges of G have cost 0 and all
other edges have a positive cost. Then G contains
a Hamiltonian cycle if and only if an optimal
tour has cost 0.

An interesting special Hamilton cycle problem
is the so-called knight’s-tour problem. A knight is
to be moved around on a chessboard in such a
way that all 64 squares are visited exactly once
and the moves taken constitute a round trip on
the board. Fig. 10 depicts one solution of the
problem. The two first moves are shown with
arrows.

The problem is an instance of the general
“leaper” problem: “Can a {r, s}-leaper, starting at
any square of a mxn board, visit each square ex-

actly once and return to its starting square’ [46].
The knight’s-tour problem is the 1,2-leaper prob-
lem on a § X8 board.

Table 5 shows the performance statistics for a
few leaper problems. A small C-program, included
in TSPLIB, was used for generating the leaper
graphs. Edges belonging to the graph cost 0, and
the remaining edges cost 1.

The last of these problems has an optimal tour
length of 18. All the other problems contain a
Hamiltonian cycle, i.e., their optimum tour length
is 0.

Table 6 shows the performance for the same
problems, but now the edges of the leaper graph
cost 100, and the remaining edges cost 101. Lin
and Kernighan observed that knight’s-tour prob-
lems with these edge costs were hard to solve for
their algorithm [1].

As seen the new implementation is almost un-
affected.

6.4. Pathological problems

The Lin—Kernighan algorithm is not always as
effective as it seems to be with “random” or
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Fig. 10. One solution of the knight’s-tour problem

“typical” problems. Papadimitriou and Steiglitz
[47] have constructed a special class of instances of
the TSP for which local search algorithms, such as
the Lin—Kernighan algorithm, appears to be very
ineffective. Papadimitriou and Steiglitz denote this
class of problems as ‘perverse’.

Each problem has n=8k nodes. There is ex-
actly one optimal tour with cost n, and there are
2%=1(k — 1)! tours that are next best, have arbitrary

large cost, and cannot be improved by changing
fewer than 3k edges. See [47] for a precise de-
scription of the constructed problems.

The difficulty of the problem class is illustrated
in Table 7 showing the performance of the algo-
rithm when subgradient optimization is left out.
Note the results for the cases k=3 and k= 5.
Here the optimum was frequently found, whereas
the implementation of the Lin—Kernighan algo-
rithm by Papadimitriou and Steiglitz was unable
to discover the optimum even once.

However, all these problems can be solved
without any search, if subgradient optimization is
used (provided that the initial period is sufficiently
large).

Table 8 shows the time (in seconds) to find
optimal solutions by subgradient optimization.

7. Conclusions

This paper has described a modified Lin—Ker-
nighan algorithm and its implementation. In the
development of the algorithm great emphasis was
put on achieving high quality solutions, preferably
optimal solutions, in a reasonable short time.

Table 5
Performance for leaper problems (Variant 1)
Problem Success Trials Gap (%) Time (s)
Min Average Max Min Min Average
{1,2}, 8x38 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 10x 10 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 20x 20 100/100 1 2.1 0.000 0.000 0.0 0.0
{7,8}, 15x 106 10/10 4 8.6 0.000 0.000 0.3 0.7
{6,7}, 13x76 100/100 1 1.1 0.000 0.000 0.3 0.5
Table 6
Performance for leaper problems (Variant 2)
Problem Success Trials Gap (%) Time (s)
Min Average Max Min Min Average
{1,2}, 8x8 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 20x 20 100/100 1 1.1 0.000 0.000 0.0 0.0
{7,8}, 15x106 10/10 3 10.0 0.000 0.000 0.4 1.0
{6,7}, 13x76 100/100 1 1.1 0.000 0.000 04 0.7
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Table 7
Performance for perverse problems (without subgradient optimization)
k n Success Trials Gap (%) Time (s)
Min Average Max Min Min Average
3 24 46/100 1 14.9 2479.5 8291.7 0.0 0.0
4 32 55/100 1 17.4 1732.8 6209.4 0.0 0.0
5 40 48/100 1 24.1 1430.4 4960.0 0.0 0.0
6 48 53/100 1 26.6 1045.1 4127.1 0.0 0.0
7 56 32/100 1 41.2 1368.2 3532.1 0.0 0.0
8 64 41/100 1 41.2 1040.2 3085.9 0.0 0.0
9 72 1/100 5 71.3 1574.1 2738.9 0.0 0.1
10 80 2/100 1 78.6 1700.5 4958.8 0.0 0.2
Table 8 When distances are implicitly given, space re-

Time to find the optimal solutions for perverse problems (with
subgradient optimization)

k n Time (s)
3 24 0.0
4 32 0.0
5 40 0.0
6 48 0.1
7 56 0.1
8 64 0.1
9 72 0.1
10 80 0.2

Achieving simplicity was of minor concern
here. In comparison, the modified Lin—Kernighan
algorithm of Mak and Morton [48] has a very
simple algorithmic structure. However, this sim-
plicity has been achieved with the expense of a
reduced ability to find optimal solutions. Their
algorithm does not even guarantee 2-opt opti-
mality.

Computational experiments have shown that
the new algorithm is highly effective. An optimal
solution was obtained for all problems with a
known optimum. This is remarkable, considering
that the modified algorithm does not employ
backtracking.

The running times were satisfactory for all test
problems. However, since running time is ap-
proximately O(n*?), it may be impractical to solve
very large problems. The current implementation
seems to be feasible for problems with fewer than
100,000 cities (this depends, of course, of the
available computer resources).

quirements are O(n). Thus, the space required for
geometrical problems is linear. For such problems,
not space, but run time, will usually be the limiting
factor.

The effectiveness of the algorithm is primarily
achieved through an efficient search strategy. The
secarch is based on 5-opt moves restricted by
carefully chosen candidate sets. The x-measure,
based on sensitivity analysis of minimum spanning
trees, is used to define candidate sets that are
small, but large enough to allow excellent solutions
to be found (usually the optimal solutions).
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